metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[copper(II)-bis[*µ*-bis(3,5dimethyl-1*H*-pyrazol-4-yl) selenide]] bis(perchlorate)]

Maksym Seredyuk,^a* Matti Haukka,^b Vadim A. Pavlenko^a and Igor O. Fritsky^a

^aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and ^bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland Correspondence e-mail: mcs@univ.kiev.ua

Received 30 September 2009; accepted 13 October 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.011 Å; R factor = 0.047; wR factor = 0.115; data-to-parameter ratio = 17.9.

In the title compound, $\{[Cu(C_{10}H_{14}N_4Se)_2](ClO_4)_2\}_n$, the Cu^{II} ion is located on a twofold rotation axis and has a tetragonally distorted square-planar geometry constituted by four N atoms. A pair of bis(3,5-dimethyl-1H-pyrazol-4-yl) selenide (L) ligands bridges the copper centers into a polymeric chain extending along [001]. The perchlorate anions are involved in intermolecular N-H···O hydrogen bonding, which links the chains into layers parallel to the bc plane.

Related literature

For the potential applications of coordination polymers, see: Farha et al. (2009); Ohba et al. (2009); Shibahara et al. (2007). For our studies of similar complexes with different dimensionality, see Seredyuk et al. (2007).

Experimental

Crystal data

[Cu(C₁₀H₁₄N₄Se)₂](ClO₄)₂ $V = 3025.1 (17) \text{ Å}^3$ $M_r = 800.86$ Z = 4Monoclinic, C2/c Mo $K\alpha$ radiation a = 28.398 (6) Å $\mu = 3.36 \text{ mm}^$ b = 7.5865 (15) Å T = 120 Kc = 18.517 (4) Å $0.20 \times 0.15 \times 0.05 \; \rm mm$ $\beta = 130.69 (3)^{\circ}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.552, T_{\max} = 0.845$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	191 parameters
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 2.18 \text{ e } \text{\AA}^{-3}$
3415 reflections	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$

13077 measured reflections

 $R_{\rm int} = 0.074$

3415 independent reflections

2799 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H4\cdots O3^{i}$	0.88	2.06	2.912 (6)	161
$N4-H3\cdots O2^{ii}$	0.88	2.02	2.879 (6)	166

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) x, y - 1, z.

Data collection: COLLECT (Bruker-Nonius, 2004); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2624).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands

- Farha, O. K., Spokoyny, A. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727-1731.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ohba, M., Yoneda, K., Agusí, G., Munoz, M. C., Gaspar, A. B., Real, J. A., Yamasaki, M., Ando, H., Nakao, Y., Sakaki, S. & Kitagawa, S. (2009). Angew. Chem., Int. Ed. Engl. 48, 4767-4771.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shibahara, S., Kitagawa, H., Kubo, T. & Nakasuji, K. (2007). Inorg. Chem. Commun. 10, 860-862.

Acta Cryst. (2009). E65, m1396 [doi:10.1107/S1600536809042056]

catena-Poly[[copper(II)-bis[#-bis(3,5-dimethyl-1H-pyrazol-4-yl) selenide]] bis(perchlorate)]

M. Seredyuk, M. Haukka, V. A. Pavlenko and I. O. Fritsky

Comment

Molecular self-assembly through donor-acceptor interactions becomes one of the most elaborated research areas in coordination chemistry. The primary interest here is the development of functional materials with useful properties. Particularly, infinite molecular polymeric arrays are potentially applicable as specifically ordered crystalline substances with reversible selective sorption (Farha *et al.*, 2009), electrical conductivity (Shibahara *et al.*, 2007) and molecular magnetism functionality (Ohba *et al.*, 2009).

The title compound, $[Cu(cis-\mu-L)_2](ClO_4)_2$, was readily prepared by mixing aquoeous solution of $Cu(ClO_4)_2.6H_2O$ and methanolic solution of the ligand bis(3,5-dimethyl-1*H*-pyrazolyl)selenide (*L*) prepared according to Seredyuk *et al.* (2007). A tetragonally distorted square-planar environment of the Cu^{II} ion is formed by four non-coplanar nitrogen atoms of propeller-like arranged pyrazolyl cycles (distances Cu–N are 1.982 (5) and 1.967 (5) Å, two diagonal angles N–Cu–N are 163.6 (3) and 168.8 (3)°, respectively). Symmetrically equivalent ligand molecules in *cis*-bonding configuration are linked to Cu^{II} ion in a double-stranded bridge fashion (Fig. 1.). By repeats, they form linear chain running along the *c* axis within which each copper atom deviates from the average position by a value of ±0.068 (5) Å (Fig. 2). The NH group of each pyrazole cycle is involved in hydrogen bonding with perchlorate group resulting in the formation of a three-dimensional hybrid network.

Experimental

A solution of $Cu(ClO_4)_2.6H_2O(0.065 \text{ g})$ in water (10 ml) was mixed with a solution of $L.H_2O(0.1 \text{ g})$ in methanol (10 ml) and was set aside for one week after which brown crystals of the title compound were isolated. Found C, 29.83, H, 3.65, N, 13.81. $C_{20}H_{28}Cl_2CuN_8O_8Se_2$ requires C, 29.99, H, 3.52, N, 13.99.

Refinement

All H atoms were geometrically positioned (C—H 0.98 Å; N—H 0.88 Å), and refined as riding, with $U_{iso}(H) = 1.2-1.5$ $U_{eq}(C, N)$. The crystal studied was a twin, so matrix (100) was used in the refinement of the crystal structure.

Figures

Fig. 1. A portion of the crystal structure of the title compound showing the labeling scheme and 50% probabilty displacement ellipsoids [symmetry codes: (i) –x, 1–y, –z, (ii) –x, y, – 0.5–z, (iii) x, 1–y, –1/2 + z]. H atoms are omitted for clarity.

Fig. 2. A packing diagram of the title compound viewed along the *b*-axis. H atoms are omitted for clarity.

catena-Poly[[copper(II)-bis[µ-bis(3,5-dimethyl-1*H*- pyrazol-4-yl) selenide]] bis(perchlorate)]

 $F_{000} = 1596$

Crystal data

 $[Cu(C_{10}H_{14}N_4Se)_2](ClO_4)_2$ $M_r = 800.86$ Monoclinic, C2/c Hall symbol: -C 2yc a = 28.398 (6) Å b = 7.5865 (15) Å c = 18.517 (4) Å $\beta = 130.69$ (3)° V = 3025.1 (17) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer	3415 independent reflections
Radiation source: fine-focus sealed tube	2799 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.074$
T = 120 K	$\theta_{max} = 27.5^{\circ}$
ω–scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -36 \rightarrow 34$
$T_{\min} = 0.552, T_{\max} = 0.845$	$k = -9 \rightarrow 9$
13077 measured reflections	$l = -24 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.115$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0574P)^{2} + 8.3063P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
3415 reflections	$\Delta \rho_{max} = 2.18 \text{ e} \text{ Å}^{-3}$
191 parameters	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $D_x = 1.758 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3400 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 3.36 \text{ mm}^{-1}$ T = 120 KPlates, brown $0.2 \times 0.15 \times 0.05 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.0000	0.48037 (13)	-0.2500	0.0124 (2)
Se1	0.15222 (2)	0.73993 (6)	0.14892 (4)	0.01476 (14)
C11	0.13436 (8)	0.99852 (19)	0.36166 (12)	0.0307 (4)
01	0.1340 (3)	1.0280 (6)	0.2844 (4)	0.0369 (12)
O2	0.1537 (3)	1.1562 (6)	0.4173 (3)	0.0430 (13)
03	0.1753 (2)	0.8577 (5)	0.4177 (4)	0.0410 (14)
O4	0.0732 (2)	0.9468 (7)	0.3248 (4)	0.0510 (14)
N1	0.0655 (2)	0.5177 (6)	-0.1109 (3)	0.0144 (10)
N2	0.1167 (2)	0.4166 (6)	-0.0546 (3)	0.0146 (10)
H4	0.1257	0.3301	-0.0755	0.017*
N3	0.0637 (2)	0.5450 (6)	0.2384 (3)	0.0125 (10)
N4	0.1183 (2)	0.4511 (6)	0.2931 (3)	0.0131 (10)
H3	0.1284	0.3739	0.3367	0.016*
C1	0.0190 (3)	0.7707 (8)	-0.0923 (4)	0.0237 (14)
H11A	0.0036	0.8098	-0.1548	0.036*
H11B	0.0367	0.8713	-0.0486	0.036*
H11C	-0.0155	0.7211	-0.0987	0.036*
C2	0.0679 (3)	0.6330 (7)	-0.0538 (4)	0.0141 (12)
C3	0.1216 (3)	0.6022 (7)	0.0402 (4)	0.0128 (12)
C4	0.1526 (3)	0.4643 (7)	0.0377 (4)	0.0146 (11)
C5	0.2128 (3)	0.3741 (9)	0.1141 (5)	0.0268 (15)
H19A	0.2057	0.2792	0.1420	0.040*
H19B	0.2422	0.4595	0.1637	0.040*
H19C	0.2300	0.3245	0.0867	0.040*
C6	0.0155 (3)	0.7705 (8)	0.1110 (5)	0.0217 (14)
H8A	-0.0160	0.7091	0.0508	0.033*
H8B	0.0328	0.8680	0.1000	0.033*
H8C	-0.0035	0.8168	0.1362	0.033*
C7	0.0657 (3)	0.6460 (7)	0.1804 (4)	0.0140 (12)
C8	0.1218 (3)	0.6135 (7)	0.1993 (4)	0.0128 (11)
C9	0.1539 (3)	0.4907 (7)	0.2723 (4)	0.0148 (12)
C10	0.2162 (3)	0.4049 (8)	0.3247 (5)	0.0250 (14)
H17A	0.2105	0.2792	0.3088	0.037*

H17B	0.2407	0.4188	0.3935	0.037*
H17C	0.2380	0.4608	0.3061	0.037*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0104 (4)	0.0185 (5)	0.0111 (5)	0.000	0.0082 (4)	0.000
Se1	0.0156 (2)	0.0179 (3)	0.0128 (3)	-0.0062 (2)	0.0101 (3)	-0.0039 (2)
C11	0.0342 (8)	0.0231 (7)	0.0390 (9)	0.0019 (7)	0.0258 (8)	0.0063 (7)
01	0.052 (3)	0.032 (3)	0.038 (3)	-0.003 (2)	0.034 (3)	-0.001 (2)
O2	0.068 (4)	0.030 (2)	0.027 (3)	0.000 (3)	0.029 (3)	0.003 (2)
O3	0.055 (4)	0.022 (2)	0.064 (4)	0.013 (2)	0.048 (3)	0.016 (2)
O4	0.037 (3)	0.070 (4)	0.048 (3)	-0.017 (3)	0.029 (3)	-0.011 (3)
N1	0.015 (3)	0.016 (2)	0.012 (2)	0.002 (2)	0.008 (2)	-0.0016 (18)
N2	0.013 (3)	0.016 (2)	0.012 (2)	0.0048 (19)	0.007 (2)	-0.0009 (18)
N3	0.012 (2)	0.018 (2)	0.010 (2)	0.004 (2)	0.008 (2)	0.0002 (18)
N4	0.011 (2)	0.015 (2)	0.010 (2)	0.0013 (19)	0.005 (2)	0.0022 (17)
C1	0.024 (4)	0.021 (3)	0.017 (3)	0.009 (3)	0.010 (3)	0.001 (2)
C2	0.012 (3)	0.017 (3)	0.016 (3)	0.001 (2)	0.011 (3)	0.001 (2)
C3	0.015 (3)	0.014 (3)	0.011 (3)	-0.003 (2)	0.009 (2)	0.001 (2)
C4	0.015 (3)	0.017 (2)	0.014 (3)	0.001 (2)	0.011 (3)	0.001 (2)
C5	0.021 (4)	0.033 (4)	0.024 (3)	0.007 (3)	0.013 (3)	0.003 (3)
C6	0.015 (3)	0.026 (3)	0.022 (3)	0.004 (3)	0.010 (3)	0.011 (2)
C7	0.017 (3)	0.014 (3)	0.011 (3)	-0.001 (2)	0.009 (3)	-0.001 (2)
C8	0.014 (3)	0.015 (3)	0.010 (3)	-0.001 (2)	0.009 (2)	-0.003 (2)
C9	0.012 (3)	0.017 (3)	0.016 (3)	-0.001 (2)	0.009 (2)	-0.001 (2)
C10	0.020 (3)	0.031 (3)	0.029 (3)	0.006 (3)	0.018 (3)	0.008 (3)

Geometric parameters (Å, °)

1.967 (5)	C1—H11A	0.9800
1.967 (5)	C1—H11B	0.9800
1.982 (5)	C1—H11C	0.9800
1.982 (5)	C2—C3	1.396 (8)
1.893 (5)	C3—C4	1.387 (8)
1.902 (5)	C4—C5	1.497 (8)
1.413 (5)	С5—Н19А	0.9800
1.434 (5)	С5—Н19В	0.9800
1.442 (5)	С5—Н19С	0.9800
1.447 (5)	C6—C7	1.478 (8)
1.339 (7)	C6—H8A	0.9800
1.347 (6)	С6—Н8В	0.9800
1.349 (7)	С6—Н8С	0.9800
0.8800	С7—С8	1.413 (8)
1.349 (7)	C8—C9	1.386 (8)
1.373 (6)	C9—C10	1.502 (8)
1.967 (5)	C10—H17A	0.9800
1.330 (7)	C10—H17B	0.9800
	1.967 (5) 1.967 (5) 1.982 (5) 1.982 (5) 1.893 (5) 1.902 (5) 1.413 (5) 1.434 (5) 1.442 (5) 1.447 (5) 1.339 (7) 1.347 (6) 1.349 (7) 0.8800 1.349 (7) 1.373 (6) 1.967 (5) 1.330 (7)	1.967(5) $C1-H11A$ $1.967(5)$ $C1-H11B$ $1.982(5)$ $C1-H11C$ $1.982(5)$ $C2-C3$ $1.893(5)$ $C3-C4$ $1.902(5)$ $C4-C5$ $1.413(5)$ $C5-H19A$ $1.434(5)$ $C5-H19B$ $1.442(5)$ $C5-H19C$ $1.447(5)$ $C6-C7$ $1.339(7)$ $C6-H8A$ $1.347(6)$ $C6-H8B$ $1.349(7)$ $C6-H8C$ 0.8800 $C7-C8$ $1.349(7)$ $C8-C9$ $1.373(6)$ $C9-C10$ $1.967(5)$ $C10-H17A$ $1.330(7)$ $C10-H17B$

N4—H3 C1—C2	0.8800	C10—H17C	0.9800
N2 ⁱ Cu1 N2 ⁱⁱ	168 8 (3)	$C_4 - C_3 - C_2$	106.5 (5)
$N_{3}^{i} = C_{11} = N_{1}^{i}$	91 28 (16)	C4-C3-Se1	126.0(4)
	90.32 (16)	$C_1 = C_2 = S_2 $	120.0(4)
N3"—CuI—NI	90.32 (10)		127.0 (4)
N3'-Cu1-N1'''	90.32 (16)	N2	105.9 (5)
$N3^{11}$ —Cu1—N1 ¹¹¹	91.28 (16)	N2—C4—C5	121.9 (5)
N1—Cu1—N1 ⁱⁱⁱ	163.6 (3)	C3—C4—C5	132.2 (5)
C8—Se1—C3	101.66 (19)	C4—C5—H19A	109.5
O3—C11—O2	110.9 (3)	C4—C5—H19B	109.5
O3—Cl1—O1	108.4 (3)	H19A—C5—H19B	109.5
O2—Cl1—O1	109.5 (3)	C4—C5—H19C	109.5
O3—Cl1—O4	107.6 (3)	H19A—C5—H19C	109.5
O2—Cl1—O4	110.2 (4)	H19B—C5—H19C	109.5
01—Cl1—O4	110.2 (4)	С7—С6—Н8А	109.5
C2—N1—N2	106.7 (5)	С7—С6—Н8В	109.5
C2—N1—Cu1	129.9 (4)	H8A—C6—H8B	109.5
N2—N1—Cu1	123.3 (3)	С7—С6—Н8С	109.5
N1—N2—C4	111.7 (4)	H8A—C6—H8C	109.5
N1—N2—H4	124.1	H8B—C6—H8C	109.5
C4—N2—H4	124.1	N3—C7—C8	109.2 (5)
C7—N3—N4	105.7 (4)	N3—C7—C6	122.5 (5)
C7—N3—Cu1 ⁱ	131.4 (4)	C8—C7—C6	128.3 (5)
N4—N3—Cu1 ⁱ	122.9 (3)	C9—C8—C7	106.1 (5)
C9—N4—N3	112.0 (4)	C9—C8—Se1	126.9 (4)
C9—N4—H3	124.0	C7—C8—Se1	126.3 (4)
N3—N4—H3	124.0	N4—C9—C8	107.1 (5)
C2—C1—H11A	109.5	N4—C9—C10	120.8 (5)
C2—C1—H11B	109.5	C8—C9—C10	132.0 (5)
H11A—C1—H11B	109.5	C9—C10—H17A	109.5
C2—C1—H11C	109.5	С9—С10—Н17В	109.5
H11A—C1—H11C	109.5	H17A—C10—H17B	109.5
H11B—C1—H11C	109.5	C9—C10—H17C	109.5
N1—C2—C3	109.1 (5)	H17A—C10—H17C	109.5
N1—C2—C1	121.8 (5)	H17B—C10—H17C	109.5
C3—C2—C1	129.1 (5)		
N3 ⁱ —Cu1—N1—C2	-53.2 (5)	N1—N2—C4—C5	-178.8 (5)
N3 ⁱⁱ —Cu1—N1—C2	138.0 (5)	C2-C3-C4-N2	-1.3 (6)
N1 ⁱⁱⁱ —Cu1—N1—C2	42.3 (5)	Se1—C3—C4—N2	-174.1 (4)
N3 ⁱ —Cu1—N1—N2	122.9 (4)	C2—C3—C4—C5	178.5 (6)
N3 ⁱⁱ —Cu1—N1—N2	-45.9 (4)	Se1—C3—C4—C5	5.7 (9)
N1 ⁱⁱⁱ —Cu1—N1—N2	-141.6 (4)	N4—N3—C7—C8	0.3 (6)
C2—N1—N2—C4	-0.4 (6)	Cu1 ⁱ —N3—C7—C8	-179.0 (4)
Cu1—N1—N2—C4	-177.3 (4)	N4—N3—C7—C6	-178.8 (5)
C7—N3—N4—C9	0.7 (6)	Cu1 ⁱ —N3—C7—C6	2.0 (9)

$C_{\rm H}1^{\rm i}$ N2 N4 C0	180.0 (4)	N3	-1.0(6)
Cui —N3—N4—C9	180.0 (4)	NJ-C/-CJ	1.0 (0)
N2—N1—C2—C3	-0.4 (6)	C6—C7—C8—C9	177.9 (6)
Cu1—N1—C2—C3	176.2 (4)	N3—C7—C8—Se1	-172.0 (4)
N2—N1—C2—C1	178.4 (5)	C6—C7—C8—Se1	7.0 (9)
Cu1—N1—C2—C1	-5.0 (8)	C3—Se1—C8—C9	97.2 (5)
N1—C2—C3—C4	1.1 (6)	C3—Se1—C8—C7	-93.7 (5)
C1—C2—C3—C4	-177.6 (6)	N3—N4—C9—C8	-1.3 (6)
N1-C2-C3-Se1	173.8 (4)	N3—N4—C9—C10	179.1 (5)
C1—C2—C3—Se1	-4.9 (9)	C7—C8—C9—N4	1.4 (6)
C8—Se1—C3—C4	-91.4 (5)	Se1-C8-C9-N4	172.3 (4)
C8—Se1—C3—C2	97.3 (5)	C7—C8—C9—C10	-179.1 (6)
N1—N2—C4—C3	1.1 (6)	Se1—C8—C9—C10	-8.3 (9)
Symmetry codes: (i) $-x$, $-y+1$, $-z$; (ii) x ,	, - <i>y</i> +1, <i>z</i> -1/2; (iii) - <i>x</i> , <i>y</i> , - <i>z</i>	-1/2.	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H4···O3 ⁱⁱ	0.88	2.06	2.912 (6)	161
N4—H3···O2 ^{iv}	0.88	2.02	2.879 (6)	166
Symmetry codes: (ii) $r = v + 1 = r - 1/2$; (iv) $r = v - 1 = r$				

Symmetry codes: (ii) x, -y+1, z-1/2; (iv) x, y-1, z.

Fig. 1

